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We apply lattice dynamics to calculate the vibrational modes of a perfect 4.-DNA homopolymer crys-
tal with sodium ions. A Green-function method is used to reduce the dimension of the matrix to be diag-
onalized. We concentrate on the biologically significant crystal modes with frequencies less than 100
wave numbers. 94% of the crystal modes were likely to be located in this frequency range. Characteris-
tics of the crystal modes are analyzed. We find that the interhelical modes dominate in the frequency
range 25-30 cm ™! and the intrahelical modes dominate for frequencies greater than 80 cm~'. The in-
frared absorption peaks at 35, 50, and 83 cm ™! in our model. The former two bands are not counterion
dependent and the latter one is. Our Raman scattering spectrum peaks around 30 cm ™! and it is strong-
ly counterion dependent. The counterion-dependency trend of this band is the same as that of the exper-
imental 25-cm ™! feature, extrapolated to O relative humidity, observed in both DNA and RNA crystals.
The characteristics of the experimental Raman scattering features at 25 and 35 cm ™! are consistent with

our results.

PACS number(s): 87.10.+e, 87.15.—v

I. INTRODUCTION

The normal modes of a symmetric isolated double heli-
cal molecule were originally studied by Eyster and
Prohofsky [1]. The whole double helix was then modeled
as a one-dimensional solid and the lattice dynamics of the
system was studied. Young, Prabhu, and Pohofsky stud-
ied the dynamics of an isolated DNA molecule with
counterions and a water envelope [2]. The force con-
stants associated with chemical bonds used in the calcula-
tion were obtained by fitting the theoretical results to the
observed Raman scattering lines above 400 cm™! [3].
The model for nonbonded force constants was developed
for electrostatic interactions between charged atoms.
These calculations were successful in reproducing the
general features of the Raman spectra for the optical
modes near k(wave vector)=0. Young, Prabhu, and
Prohofsky [2] modeled a coupling between two helices
which included counterions and water molecules, at-
tempting to predict the interhelical modes. The limited
agreement of that work has stimulated this more
thorough attempt to model the crystal form. The princi-
pal reason to study crystalline DNA is the finding that
the spectra should be sharper than that for fibers. The
best experimental data should come from the best crys-
tals even though the isolated helix modes are used ex-
clusively in theoretical studies. One needs to be able to
separate out effects due to crystal effects.

A DNA crystal is treated as an infinite three-
dimensional lattice with the smallest repetitive combina-
tion of DNA segments as the unit cell. The size of the
DNA crystal unit cell varies. According to Lindsay [4], a
crystal unit cell has, at the minimum, two to three 360°
turns of separate helices. Including the external groups
of atoms such as sodium ions and water molecules, the
minimum number of atoms per crystal cell is approxi-
mately 1000. It is very clumsy to carry out the study of
the dynamics of the DNA crystal in a straightforward
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way without utilizing the facilities of a supercomputer
such as a Cray Model YMP/8. Solutions by this method
require diagonalization of a matrix of dimension
(3000 3000). To reduce the size of the problem we turn
to the Green-function method to determine the normal
modes of a DNA crystal. It has the further advantage
that the interhelical modes are found as combinations of
the biologically more significant helix modes.

The Green-function method provides us with a means
to obtain exact solutions for the lattice dynamics of lat-
tices with defects based on the solutions for the dynamics
of perfect lattices. The normal modes of a DNA crystal
without the interhelical interactions are determined first.
All of these modes can be found from our single-helix
solutions of the homopolymer DN A molecule which only
require diagonalization of a (129X 129) matrix. This sys-
tem can be taken as a solid made up of isolated helices.
The interactions between atoms belonging to the same
DNA molecule are called the “intrahelical interactions”
and those between atoms belonging to different DNA
molecules are the ‘“‘interhelical interactions.” We will
treat the interhelical interactions as the “defect” from the
system of noninteracting helices.

Use of the Green function can reduce the size of the
problem to the size of the force matrix of the defects
which is much smaller because the ‘“defects” involve only
a few atoms. We approximate the interhelical interac-
tions by considering only the interactions between some
nearby atoms of adjacent DNA molecules. The smaller
the number of atoms chosen to involve in the interhelical
interactions, the more use of the Green function can
reduce the dimension of the problem but the less accurate
the approximation of the true interhelical crystal is.
With careful choice of atoms for the interhelical interac-
tions, we reduce the size of the matrix to be diagonalized
from (2858 X2858) to (264 X264 ).

The assumptions made for this calculation are as fol-
lows. (a) Similar to the case of an isolated DNA mole-
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cule, the hydrogen atoms are assigned to either the car-
bon, oxygen, or nitrogen atoms to which the hydrogen
atoms attach. This measure enables us to reduce the de-
grees of freedom of the problem by a large amount
without distorting the essence of the dynamics of the
DNA molecules. (b) Each phosphate group in the DNA
crystal is assigned a sodium ion and the position of the
sodium ion is assumed to be on the diagonal axis of the
parallelogram formed by the phosphorus and the two free
oxygen atoms of the phosphate group. (c) The set of
force constants between the atoms of the same double
helix in the DNA crystal was adopted from the force
fields used to calculate the vibrational modes of an isolat-
ed DNA molecule [2]. This set of refined force constants
has given results in good agreement with experimental
observations [2]. (d) The interhelical interactions are as-
sumed to be the summations of the van der Waals and
electrostatic interactions between the sodium ions, phos-
phorus atoms, and the two free oxygen atoms of the
phosphate groups of adjacent double helices since these
atoms are at the outer rim of DNA molecules. The effect
due to water clusters is not considered in this study.

Coordinates

A-DNA forms a monoclinic crystal that can be gen-
erated by fundamental translatlon vectors, a =21.7 A
b=39.9 A and ¢ =28.0 A. The angles between the
translation vectors are a=4(b,c)=90.0°, y=~X(a,b)
=90.0°, and B=4(a,c)=96.8° [5]. Each crystal unit cell
contains two 360° double helical turns which belong to
two separate double helices. There are 22 base pairs in
each crystal unit cell. The two DNA turns lie parallel to
the c axis. Each 360° turn segment is named “a seg-
ment.” The two segments are located at (0,0,0) and
(£,4,0). Pitch and pitch angle of the A-GC segments
are, respectively, 2.548 A and 32.7° (G denotes guanine
and C cytosine).

Various observations have shown that Na™ ions do not
appear to be localized in either DNA fibers or crystals
[5]. However, fitted ion positions are required in order to
carry out this calculation. Simulations by Clementi and
Corongiu [6] indicate that the sodium ions, strongly at-
tracted to the free phosphate oxygen atoms, follow heli-
cal patterns along the backbones. The average distance
from the sodium ion to the two free oxygen atoms of the
phosphate group was calculated to be 2.7 A2, 7]. After
we consider the short-range electrostatic force between
the ions and the phosphate atoms and the atomic and
ionic radii of the atoms, the final positions for Nat were
chosen to be on the diagonal axis of the O(1)—P—O(2)
parallelogram and the distance from Na™ to the nearby
O(1), O(2) and the phosphorous atoms is, respectively
2.67, 2.67, and 3.14 A. One sodium ion is assigned to
each phosphate group. The charge of each sodium ion is
assumed to be 1.00 in units of electron charge. Including
the ions, there are 43 atoms, excluding the hydrogen
atoms, in each base pair. The degrees of freedom of this
DNA homopolymer crystal is 2838.
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II. DYNAMICS OF A DNA CRYSTAL

The dynamics of an isolated DNA molecule has been
fully studied by Prohofsky and co-workers [1-3,8-10].
The dynamics of a DNA crystal is an extension of that of
an isolated DNA molecule. Numerous notations are
used to label the dynamics of DNA at different levels to
avoid confusion. Table I lists the labels and the corre-
sponding levels of the dynamics of DNA.

Kinetic energy of a DNA crystal can be expressed in
the mass-weighted Cartesian (MWC) coordinates

[1]-

=1Z, w0 =(o,0,). 1)

= 2

o

The n=(n,,n,,n_) is the index vector for the crystal unit

cells. =, is the MWC coordinate vector of the nth crystal
unit cell. The MWC coordinate for atom i is defined as

fi=—w—, )

with q; and m; being the Cartesian displacement vector
and mass of the atom i.

We express the MWC coordinates in terms of the
MWC symmetry coordinates, X (O),

2,=2m [ [T [T X(@)exp(—in-©)d’0 . ()

0=(0,,06,,0,) is the phase difference vector between
crystal unit cells. Wave vector k=(k,,k;,k ) is

=0,/21.7 A, k,=6,/39.9 A, k,=06,/28.0 A .
@)

The Fourier expansion of the § function in three dimen-
sions is

L_ 5 expl—in(@—09]. (5

8(0—0')=
( ) Q)3 =,

Kinetic energy of the DNA crystal can be shown to be
ar=[" [7 [T X@1%(©)d’% . (©6)

We assume that the force between each pair of atoms is
harmonic, therefore we can write the potential energy of
the DNA crystal as

oo

2V = 2 E Ql{n+mFan,n+m . (7)
n=—o m=(0,0,0)

Qnn+m is the redundant internal coordinate vector be-

TABLE I. Labels for different levels of the DNA dynamics.

Label Dynamics of DNA
b DNA molecule with one base pair as a unit cell
s DNA molecule with one segment (360° turn) as

a unit cell
cr DNA crystal with both the interhelical and
intrahelical interactions
inter DNA crystal with only the interhelical interactions
intra. DNA crystal with only the intrahelical interactions
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tween nth and (n+m)th crystal unit cells. F™ is the
force constant matrix and it only depends on the separa-
tion of the two crystal unit cells. In a valence-force-field
analysis [11] there are four types of internal coordinates;
i.e., bond stretch, angle bend, torsion, and bond bending
out of a plane [2,11]. The nonbonded forces are generally
treated as stretches between the pairs of atoms involved
in electrostatic interactions [2]. The interhelical interac-
tions are the summation of all of the nonbonded stretches
between atoms of different double helices.

We use matrix D to link the internal coordinates to the
MWC coordinates. For m=(0,0,0), the internal coordi-
nates are within the same crystal unit cell. We can ex-
press the internal coordinates within the nth unit cell as

Qn,nzDO,OEn . (8)

D, g gives the expansion coefficients of the internal coor-
dinates between two crystal unit cells separated by B
units to the MWC coordinates of the two unit cells. a in-
dicates the unit cells at the two ends of the internal coor-
dinates and it can be either 0 or B. See Fig. 1.

For m+#(0,0,0), the internal coordinates between unit
cells n and n+m are

Qn,n+m:D0,mEn+Dm,mEn+m . 9
Potential energy then becomes
V=3 (Do,ozn)TFo(Do,()En)
n=-—o
+ 2 [(DO,mEn+Dm,mEn+m)T
m (#0)
><Fm(D(l,mEn4'Dm,m5u+m)]

(10)

=["[" [T x"em (e)1x©)d’e . (11

- T -

M_.(©) is the M matrix for the DNA crystal and it in-
corporates the force constant matrix F and the transfor-
mation matrix D,

M (©)=DgoF’Dqq

+ 3 [DI F™Dgn+e™®DL F™Dg,
m (#0)

+e "™ODF F™Dy
+DL F™Dpym] . (12)
With both the kinetic energy and potential energy in

i

m,= o
Mintra(ec)=D({0F;gtraD0,0+ 2

m=mc’é,mc:1

[DgmFh

intra

T m
+D m, mF intra:

im© —
en T m
DO,m+e Dm,mFintraDO,m+e
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FIG. 1. D matrix for DNA crystals. The internal coordi-
nates between unit m and n+m are Q.. im=DomZn
+D m,mEn+m~

the MWC symmetry coordinates, we have the equation of
motion for the DNA crystal

X(©)+M_(6)X(e)=0. (13)
Let X (©)=R (O)e “’ and we have
[M_(0)—w’I]R(©)=0. (14)

o is the oscillation frequency for the DNA crystal. To
obtain a nontrivial solution of X (©), we let

det[M_(©)—w’I]=0 . (15)

If S..(©) and A (O) are, respectively, the eigenvector
and eigenvalue of matrix M_(©), we have

[M(0)S,.(0)—S5.(0)A,(0)]=0. (16)

cr indicates that the matrices are for the DNA crystal
with both the interhelical and intrahelical interactions.
We divide the potential energy such that

V:Vintra+Vinter ’ a7
2Vintra: 2 2 Qr{n+mF$traQn,n+m ’ (18)
n=—o m=0
0 m= oo T
2Vinter= E 2 Qn,n+m ﬁter n,n+m ° (19)
n=—o m=0

F, ... and F; .. contain force constants for the intraheli-
cal and interhelical interactions. Without the interhelical
interactions, only the atoms belonging to the same DNA
double helix have interactions with each other, therefore
m|c. It can be shown that the potential energy of the
DNA crystal due to only the intrahelical interactions is

W= [ [T X(©@M,,(0)X(0)d%0, (20)

where

im©
c m
DO,mFintraDm,m

mm] - 21

Since there are no interhelical interactions involved, the oscillation wave can only propagate along the helix axis and
the phase difference vectors only exist in the ¢ direction. The explicit matrix forms are
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M (O,) 0
Min(®)=1| o M 0,)
S,(6,) 0
Sintra(e): 0 Ss(ec) ’
and
A (O,) 0
Aintra(©)= 0 A(B,) |
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(22)

(23)

(24)

M, S;, and A, are for an isolated DNA molecule with one segment as a unit cell and they are discussed in Appendix A.
There are interhelical interactions not only between the two segments of the same crystal unit cell, I and II, but also
between the nearby segments of neighboring crystal unit cells, mainly in the directions (1,0,0), (0,1,0), and (1,1,0). Thus

Vinter can be approximated as
2Vinter = i [ QaaFineCnn T n+1,00F imerCnnt(1,0,0
1=—o
00 0+0,1,0F e Cnn+0,1,0 t Cnt(1,1,0F er@nnt(1,1,0)] 25
=f _”F I i i _”ﬂx*(mMmr(ea,eb )X (©)d’e , (26)
Mineer(©,,0,)= DoF? 1D oo + D, 100F ‘Do, 100 +e'%D 100,100F "D, 100
te _ieaDoT,looFlooD 100,100 T2 100, 100F D 100,100 + D 3,016F ***Do,010
+eiebDon,0101170101)0,010 te _iebDoT,omFmoDmo,mo +D 10,0108 *°Do1o,010
+D0T,110F110Do,11o+e“e" To'p f10,110F '°Do, 110
e T DT D 10,110+ D o 110F "D 0 - @7
1
The equation of motion becomes vector X; is real and we have
(Minea(©)+ Mine(0,,0,)—w?IIR (©)=0 .  (28) Emj=(2m)2[X;(0)] . (32)

M. will be treated as the “defect” from M, ,.
Let X;(8) represent the jth eigenvector of M (8).
This mode is degenerate with X;(—8)=X(8) for 60
[1]. They are transformed into one another by the time-
reversal operator. Similar to the dynamics of an isolated
DNA molecule, we can construct an orthogonal pair
such as
1
XJ?(8)=‘/—§[Xj(8)+Xj(—8)] )
(29)

__1
X[(8)=—~1X;(8)—X;(—8)] .

Let E,,; represent the actual Cartesian displacements of
the atoms in the mth unit cell during the jth normal
mode of phase difference 6 and frequency w;. We have

a4 = ——§3_/2 Re[X;(8)e ~im3] (30)
mj ‘/2 j ’
b ._———’_3_/2 Im[X;(5)e ~i™?] (31)
mj ‘/2 Jj .

For the modes at zone center, §=0, the displacement

III. GREEN-FUNCTION APPROACH

As mentioned, the equations of motion of a DNA crys-
tal without the interhelical interactions are [12]

[Minira(8,)—w*IIR(6,)=0, (33)
and
[Mintra(ec )Sintra(ec )_Sintra(ec )Aintra( ec )] =0 ’ (34)

with M;...(0,), 8;,:.(0,), and A,,,,,(©,) defined in Egs.
(22)-(24).
We define the Green function G as

G (M, (©0,)—AI)=1I . (35)

The Green function is a function of ©, and A. It is men-
tioned in Appendix A that S, satisfies the unitary
condition, therefore so does S;,.(0.); ie.,
S} tra(0.)80:a(©,)=1I. From Eq. (34), we have

S?ntraMintraSimra = Aintra . (36)
Multiply S ;rmm and S;,,., to the left- and right-hand sides
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of Eq. (35) and we get

ST 5aGSintral S raMintraSinera —M1=T . (37)
Plug in Eq. (36) and we have

St aGSintral Aitra—AI1=T . (38)
Let A= Aj.(O,.)— Al and it becomes

St 2GS A=T . (39)
A is a diagonal matrix. Let

Ki(©,) 0

K=A"'=| o k.o, (40)
then

G =SinrakSTitra » @1

S, K18 0 G, 0
G= 0 Ss,IIKIISsTII - 0 GII ’ (42)

K=K and their elements are K, ;;(6.)=(A;, —}»)_18,-]».
A, is the ith eigenvalue of DNA segment x, x =1 or II
and i =1 to 129.

Apply the Green function to the equation of motion of
a DNA crystal and let H=M,,,., and A=w?. We obtain
the new equation of motion

[I+GH(6,,06,)]R(6)=0. (43)
To obtain a nontrivial solution of R (©), we have
det[I +G(O,,A)H(6,,6,)]=0. (44)

The total interhelical interaction is taken to be the
summation of all of the interactions between all of the
POOI groups. POOI is the short name for the phos-
phorus and the two free oxygen atoms of a phosphate
group and the ion next to the phosphate group. We ar-
range the MWC coordinates of the crystal unit cell so
that the coordinates of all of the POOI atoms in each seg-
ment follow those of the rest of the atoms in that seg-
ment.

al
=-n
‘En
= en . (45)

=n

[
|

=11

“-n

E£X(264X 1) are the MWC coordinates for the POOI
atoms in segment x, x =I or II, of crystal unit cell n and
§§(1155X1) are those for the rest of the atoms in seg-
ment x. The matrix of force constants due to the in-
terhelical interactions then has the form

0O o0 o0 O
0 Hy; 0 Hyy

H=1 o 0o o (46)
0 H{y 0 Hypy
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All the elements in the matrix are zero except for those of
POOI atoms.

Similar to the MWC coordinates, we arrange S; ,(6,)
such that

5,.(8,)

$.x0)= |5 (o,

, x=lorlII. (47)

S, x(6,) are the part of the displacement vector for the
POOI atoms in segment x and S, (©,) that for the rest
of the atoms in that segment. One part of the Green
function then becomes

Gi' Gy
G= , (48)

I BT G2
where Gl =AS,IKI§ZI, G2 =§S,IKI§I,D and

G} =S5, K,S!|. The equation of motion therefore has
the form

ﬁI O G}ZHI,I 0 GIIZHI,II ﬁl
EI 0 G%ZHI,I 0 G%ZHI,II ﬁl
Ru|~ |0 GEHTy O GHHyuy||Ry|™ ¥
RII 0 G%IZH IT:II 0 G%IZHII,II RII

This equation relates the motion of all the atoms in the
crystal unit cell in terms of those involved in the interhel-
ical interactions, POOI. We solve the motion for POOI
atoms from the homogeneous equations

R, GP’Hy; GPHyy | [R;
Ru|~ " (6BHIn GBHuu||Ru| 7
The condition for nontrivial solution is
dot |1 + G%2HI,I G%ZHI,II —o
G{H{y G{Huu|| GD
or
det[I +G'H']=0. (52)
where
Gf? 0 Hy; Hpy
“=lo 6| M aly Hyn| o Y

Because of the symmetry of the two DNA segments in
the crystal unit cell, we can further reduce the dimension
of the problem. Since the two segments of the crystal
unit cell are identical, we have K;=Ky; and S;=S;,
therefore G;=Gyy, Hy;=Hy 1, and HI,I‘—‘HIT,I. H'’ has
symmetric form

Ha Hb
‘ (54)

H'= [Hb Ha
H,=H;; and H,=H;y are both Hermitian matrices;
i, H,=HIand H,=H.

The equation of motion for POOI atoms can be
simplified to become
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R,
Ry
where A=I+G{H\;=I+5,,K,;SI\H, and B
=G{Hy =S, 1K1S; H,-

In order to obtain the nontrivial solutions, either
det( A~+B)~or det( A —B) should be 0. If det( 4 +B)=0,
then R;=Ry;, thus R;=Ry. These modes will be re-
ferred to as the ‘“in-phase” crystal modes. In these
modes, all of the DNA molecules in the crystgl move in
the same manner. If det(4 —B)=0, then R;=—Ry,
thus R;=—Ry;. These modes will be called the “anti-
phase” crystal modes. All of the adjacent DNA mole-

cules move in the opposite directions.
Conclusively, we solve equations

det(I +S, K,S! (H,+H,)]=0 (56)

A B

B 4 =0, (55)

for in-phase crystal modes and
det[I +S, K,S! (H,—H,)]=0 (57)

for antiphase crystal modes. The dimension of both

equations is (264 X264).
The parts of the displacement vector for the rest of the
atoms in the crystal unit become

R,=R,=—-G}*(H,+H,)R; (58)
for in-phase modes and

R,=—Ry,=—-G*(H,—H,)R, (59)
for antiphase modes.

Coefficient of crystal modes in terms of segment modes

It is helpful to express the crystal modes in terms of the
crystal modes without the interhelical interactions. The
following linear transformation is used [1]:

R =Sintrac . (60)

Elements of vector C are the expansion coefficients of the
crystal mode R in terms of Sj,,. C is found by multiply-
ing both sides of the equation by S;rmm. With the unitary
condition, S }LmraSimra =1, we have

C=8}.R =—S[ . GHR=—KS},  H'R ,  (61)
therefore
K, 0[S, o ][H, H,][R,
0 Ky 0o S 511 H, H, 11

For in-phase modes, R; =R ;=s, we have

c

C= , (63)

where ¢ =—K IS"J:I(H,, +H,)s. For antiphase modes,
R I = —R 11 =S,

C =

(4
] ’ (64)

—-C
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where ¢ = —KIS’;CI(H‘, —H,)s.
IV. RESULT

A. Crystal modes

It is difficult to solve for A analytically due to the large
dimension of the equations and the constraints of com-
puter capability. We therefore solved A numerically.

Only the crystal modes at the zone center (k=0 or
6,=6,=06,=0) were calculated as these are the only
crystal modes that cause Raman scattering and infrared
absorption. We targeted the final crystal modes at fre-
quency less than 100 cm ™! since this range of frequency
was suspected of being involved in the important physical
characteristics of DNA such as the helix softening and
melting. The frequency shifts from the segment modes to
the crystal modes are small as the frequency approaches
100 cm™!. We expect 422 crystal modes in this frequen-
cy range. There should be 211 of both in-phase and anti-
phase crystal modes. In reality, 198 in-phase modes and
199 anti-phase modes are found. They count as 94% of
the total expected crystal modes in this frequency region.

53% of the crystal modes fall in frequency range
20-45 cm ™!, and the crystal mode density is the largest
in the range 25-30 cm .

B. Low-frequency crystal modes

We have four zero-frequency modes for an isolated
DNA molecule; i.e., one torsional and one longitudinal
mode and two transverse bending modes [13]. These four
zero-frequency modes either reappear or combine with
each other into new modes with higher frequency in the
DNA crystal.

Since there are 946 (V) atoms in each crystal unit cell,
we have three acoustic branches and 2835 (3N —3) opti-
cal branches in the dispersion curve of the DNA crystal.
There are three zero-frequency translational modes at
zone center and they are all in-phase modes. The direc-
tions of motion for these degenerate modes are, respec-
tively, (0.69,0.72,0.0), (—0.78,0.62,0.0), and (0,0,1) in the
frame of the three translational vectors a, b, and c¢. Since
they are degenerate, in reality, the displacement is a
blend of the three translational motions.

Next to the three zero-frequency modes in the in-phase
branch, a low-frequency mode at 8.66 cm™! follows,
where all of the DNA molecules in the crystal twist along
their own crystal axis in the same phase. This mode has
zero frequency for an isolated DNA molecule. The in-
terhelical interactions cause this mode to undergo a very
large frequency shift.

As to the antiphase modes, at 6.0 cm™! DNA atoms
propagate mainly on the plane perpendicular to the helix
axis with a small mixture of translational motion along
the helix axis. This is the lowest-lying optical mode for
this DNA crystal. At 6.5 cm™!, DNA molecules move
parallel to the helix axis where if one DN A molecule goes
up along the helix axis, then all of the adjacent DNA
molecules go down. Again, the interhelical interactions
cause this mode to undergo a very large frequency shift.
The frequency shift for the torsional motion appears to
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be larger than that of translational motion along the helix
axis. At frequency 7.96 cm™!, neighboring DNA mole-
cules twist along their own helix axis in the opposite
directions. At 8.54 cm ™!, DNA molecules mainly twist
along the helix axis with a small combination of transla-
tional motion on the plane perpendicular to the axis.

C. Interhelical and intrahelical modes

According to the degree of the effect of the interhelical
interactions, the DNA crystal modes are roughly
classified into two categories; i.e., the “interhelical
modes” and the “intrahelical modes.” The intrahelical
modes are the crystal modes which do not undergo a big
change due to the introduction of the interhelical interac-
tions and they reflect the characteristics of the internal
bonding between the atoms of the same double helix.
These modes can be detected for the DNA either in solu-
tion or crystal form. The interhelical modes are the
DNA modes which experience a significant effect from
the interhelical interactions and these modes do not exist
in an isolated DNA molecule. These modes can only be
detected in the DNA of crystal form.

The crystal modes which come directly from corre-
sponding segment modes are the intrahelical modes since
the introduction of the interhelical interactions does not
alter the displacement pattern of these modes. The atom
displacement vectors are preserved while their frequen-
cies change due to the crystal field effects, whereas the
crystal modes which come from more than one segment
mode are the interhelical modes because these modes did
not exist until the interhelical interactions were intro-
duced. The interhelical interactions cause some segment

modes with different frequencies to combine into a new
crystal mode with a new frequency. These modes reflect
the characteristics of the crystal packing. If the position
of the DNA molecules in the lattice is changed, we ex-
pect large changes in characteristics of these interhelical
modes. The details of the distribution of interhelical and
intrahelical modes in different frequency ranges are sum-
marized in Table II.

There are 140 and 255 intrahelical and interhelical
modes which account for 35% and 65% of the total crys-
tal modes in this frequency range. The total number of
the interhelical modes is about two times that of the in-
trahelical modes. 64% of the interhelical modes fall in
the 20—45-cm ™! region with 20-25 cm ™! being the area
where the mode density is the largest. The intrahelical
modes spread out and, generally speaking, there are more
intrahelical modes in high-frequency regions than there
are in the low-frequency regions. In the 20—-30-cm ™! re-
gion there are no intrahelical modes. Along with the fact
that there are a significant number of interhelical modes
in this area, we expect the 20—30-cm ™! region to be very
strongly interhelical mode in nature as the strength of the
interhelical interactions coupled with the mass of the hel-
ices tends to bring about resonances in the region. For
the area of frequency greater than 80 cm™! intrahelical
modes dominate the interhelical ones, therefore this area
must be intrahelical-mode oriented.

In short, we found that the interhelical modes dom-
inate in the frequency range 25-30 cm™! and the in-
trahelical modes dominate in the area of frequency
greater than 80 cm ™.

It was observed in experiment [14] that the crystal
modes within frequency range 30—35 cm ! are mostly in-

TABLE II. Distribution of the interhelical and intrahelical modes, number of modes, and fraction of total number of modes. A is
the fraction of the crystal modes that are intrahelical while 3 is the fraction that are interhelical for each range.

Crystal Intrahelical Interhelical
modes modes modes

Range (cm™!) No. No. (%) A (%) No. (%) B (%)
0-5 3 3 (2.1) 100.0 0 (0.0 0.0
5-10 5 2 (1.4) 40.0 3 (1.2) 60.0
10-15 0 0 (0.0) 0 (0.0)

15-20 11 6 (4.3) 54.5 5 (2.0 45.5
20-25 27 0 (0.0) 0.0 27(10.6) 100.0
25-30 68 0 (0.0 0.0 68(26.7) 100.0
30-35 44 8 (5.7) 18.2 36(14.1) 81.8
35-40 36 5 (3.6) 13.9 31(12.2) 86.1
40-45 34 11 (7.9 324 23 (9.0) 67.6
45-50 20 5 (3.6) 25.0 15 (5.9) 75.0
50-55 20 10 (7.1 50.0 10 (3.9) 50.0
55-60 18 12 (8.6) 66.7 6 (2.4) 33.3
60-65 22 12 (8.6) 54.5 10 (3.9) 45.5
65-70 12 10 (7.1) 83.3 2 (0.8 16.7
70-75 4 4 (2.9) 100.0 0 (0.0) 0.0
75-80 0 0 (0.0 0 (0.0

80-85 28 22(15.7) 78.6 6 (2.4) 214
85-90 8 8 (5.7) 100.0 0 (0.0) 0.0
90-95 16 14(10.0) 87.5 2 (0.8) 12.5
95-100 19 8 (5.7) 42.1 11 (4.3) 57.9

Total 395 140 (35%) 255 (65%)
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terhelical modes and the modes with frequency larger
than 85 cm™! [14] were thought to be the intrahelical
modes. This observation agrees with our result.

D. Frequency shifts of the intrahelical modes

Frequencies increase from the segment modes to the
intrahelical crystal modes due to the crystal force field.
The frequency shift should indicate the strength of the in-
terhelical interactions on each particular intrahelical
mode. The bigger the potential energy due to the in-
terhelical interactions is, the larger the frequency shift
becomes. We confirmed this point by using a simplified
model for the potential energy due to the interhelical in-
teractions [15].

E. Einstein absorption and extinct coefficient

The infrared absorption intensities of the DNA modes
[2,16] are proportional to |3; (e;/V/'m;)ql|*/o for the
longitudinal polarization and

3 [Slemtak+ap) P fo

1

for tranversal polarization. For antiphase crystal modes,
the overall dipole moment of the crystal unit cell van-
ishes. Therefore they will not be detected in the observa-
tions of microwave or infrared absorption. Figure 2 is
the plot for these values versus the in-phase crystal
modes. The summation is taken over all of the atoms in
the crystal unit cell and the Cartesian displacements of
each crystal mode were normalized.

This result agrees with the selection rules derived by
Higgs [17]; i.e., only the modes with 6, =0 or ® (pitch
angle of the helix) have contribution to the infrared ab-
sorption. The Raman scattering also occurs in the crys-
tal modes with 8, =2®. We therefore predict peaks in
infrared absorption at 35, 50, and 83 cm™!. The band
with greatest absorption is at 83 cm ™! followed by 35
cm ™! and the weakest of the three is at 50 cm ™'

Experimental data on far-infrared absorption in nucleic
acid crystals exist for the RNA crystal poly(rI)-poly(rC),
which is an RNA double helix of inosine and cytosine
bases [18]. Three prominent absorption features are
found centered around 32, 50, and 65 cm~!. We will
show that the behavior of these features has much in
common with our predicted 35-, 50-, and 83-cm ! ab-
sorption peaks. The experimentally observed features are
very broad as expected for thermally activated modes.

F. Counterion-dependent modes

We can decompose a DNA molecule into five subunits;
i.e., the sugar rings, phosphate groups, G and C bases,
and the sodium ions. The motion of the center of mass of
these units and the thermal motion of the atoms relative
to the center of mass were discussed elsewhere [15]. In
some modes, the movement of the sodium ions is far
greater than that of the rest of the atoms. These modes
are expected to depend significantly on the type of coun-
terions in the DNA crystal. These modes would soften,
i.e., the frequencies decrease, when the mass of the ion in-
creases and stiffens; i.e., the frequencies increase, while
the charge of the ions increases. Tables III-VI list the
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FIG. 2. Square of dipole moment/frequency vs frequency for
the in-phase crystal modes. These values reflect infrared ab-
sorption intensities.

counterion-dependent modes which peak in the infrared
spectrum and those which are Raman scattering sensi-
tive.

1. Counterion-dependent modes:
Infrared sensitive modes

We predicted that infrared absorption peaks at fre-
quencies of 35, 50, and 83 cm™!. In Table III there are
no counterion-dependent modes with significant intensity
in the frequency regions near 35 and 50 cm ~!. Therefore
these two bands should not depend strongly on the coun-
terion species. In the 83-cm ! band, the dominant mode,
i.e., the 83.817-cm™! mode, is counterion dependent.
Therefore we expect the 83-cm ™! band to depend strong-
ly on the type of counterion. As the counterion’s mass
increases and the charge stays the same, the intensity of
the infrared absorption for the counterion-dependent
modes would decrease along with frequency decrease
[15].

Compared with the experimental observations in RNA
crystals [18], the features at 32 and 50 cm™! do not

TABLE III. Counterion-dependent modes: the modes which
peak in the infrared spectrum.

Frequency (cm™') Relative intensity Assignment
29.416 0.18(xy) Interhelical
63.507 0.22(xy) Intrahelical (6,=32°)
83.817 1.00(z) Intrahelical (6, =0°)
84.079 0.19(xy) Intrahelical (6, =32°)
84.170 0.19(xy) Interhelical
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TABLE 1IV. Counterion-dependent modes: the modes are
mainly from the segment modes with 6, =0.0".
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TABLE VI. Counterion-dependent modes: the modes are
mainly from the segment modes with 6, =65".

Frequency (cm™!) Assignment Frequency (cm™!) Assignment
28.399 Interhelical 28.360 Interhelical
28.493 Interhelical 29.022 Interhelical
28.645 Interhelical 29.025 Interhelical
28.658 Interhelical 30.698 Interhelical
29.977 Interhelical 30.721 Interhelical
30.180 Intrahelical (6,=0) 49.117 Intrahelical (6, =65°)
30.379 Interhelical 62.491 Intrahelical (6, =65°)
33.861 Intrahelical (6, =0°) 62.493 Intrahelical (6, =65°)
34.152 Intrahelical (6, =0) 62.554 Interhelical
47.236 Intrahelical (6, =0) 62.555 Interhelical
47.307 Intrahelical (6, =0°) 83.409 Intrahelical (6, =65")
63.358 Intrahelical (6,=0°) 83.417 Intrahelical (6, =65")
63.372 Intrahelical (8,=0°) 83.436 Intrahelical (6,=65°)
63.700 Intrahelical (6,=0°) 83.447 Intrahelical (6, =65°)
63.782 Intrahelical (6, =0°)
83.817 Intrahelical (6, =0°)
83.861 Intrahelical (6, =0°) G. Observed 25- and 35-cm ™~ ! modes
84.170 Interhelical in Raman scattering spectrum
84.185 Interhelical

change significantly with counterion species but the 65-
cm ™ ! feature does.

2. Counterion-dependent modes:
Raman scattering sensitive modes

From Tables IV-VI we notice that many Raman
scattering sensitive counterion-dependent modes occur at
around 30 cm™!. Since we have a large mode density for
the Raman scattering sensitive modes around 30 cm ™!,
we expect that there is a peak in the Raman spectrum
around 30 cm ™! and this peak is counterion dependent.
A significant experimental 25-cm™! band was cited for
DNA crystals at 75% relative humidity and it was pre-
dicted to be at 30 cm ™! at 0% relative humidity by using
a mass-loading model [19]. The frequency shift of this
band with counterion species agrees with what we predict
for the counterion-dependent modes.

TABLE V. Counterion-dependent modes: the modes are
mainly from the segment modes with 6, =32°.

Frequency (cm™!) Assignment
29.416 Interhelical
30.806 Interhelical
30.847 Interhelical
30.938 Interhelical
30.952 Interhelical
31.025 Interhelical
31.050 Interhelical
63.507 Intrahelical mode (6, =32°)
63.565 Intrahelical mode (0, =32°)
84.034 Intrahelical mode (6, =32°)
84.079 Intrahelical mode (6, =32°)

The Raman scattering spectrum is the result of sum-

ming all of the peaks for the sensitive modes. We predict
that the frequency region where large mode density
(number of modes per wave number) for the Raman
scattering sensitive modes occurs is where the Raman
spectlrum peaks. This frequency range is from 20 to 40
cm™ .
There are two bands sited at 25 and 35 cm ™! in the Ra-
man spectrum of the DNA crystal with sodium ions at 75
relative humidity [19-21]. With the mass-loading model
for the water molecules, they are predicted to be the 30-
and 46-cm” ! modes at O relative humidity [20] where
mass loading is absent. Both bands show large Raman
scattering intensity in VH and HV polarization. The 46-
cm ™! mode has weaker scattering in the polarized spec-
tra (VV and VH). The selection rules tell us that both
bands consist of crystal modes which are mainly from the
segment modes 8, =& and the 46-cm™ ! band also has the
crystal modes with 6, =0. The characteristics of these
two bands agree with our results. Since there are no in-
trahelical modes in the range 20-30 cm™ !, the 30-cm !
band should show characteristics of an interhelical band.
As to the 46-cm ! band, we found two intrahelical modes
which belong to group 6, =®; i.e., 42.634 cm ™! in-phase
and 42.654 cm™! antiphase modes. This explains why
this band also appeared in the spectrum of DNA in solu-
tion.

V. CONCLUSIONS

The interhelical interactions associated with the crys-
talline packing of individual helices are found to have
two effects on the modes of separated individual helices.
The first effect can be described as a crystal field shift in
frequency. The second effect is a mixing of isolated helix
modes into new crystal modes. This latter group of
modes are the interhelical modes which do not occur in
the isolated helices. 35% of the crystal modes in our re-
stricted frequency range were found to be intrahelical
modes and 65% interhelical modes. 53% of these crystal
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modes fall in the frequency range 20—-45 cm™!. 64% of
the interhelical modes fall in the 20—45-cm ™! region with
20-25 cm ™! being the area where the interhelical mode
density is the largest. The intrahelical modes spread out
in the range considered and, generally speaking, there are
more intrahelical modes in the high-frequency regions
than there are in low-frequency regions. The interhelical
modes dominate in the frequency range 25-30 cm ™.
The intrahelical modes dominate in the region with fre-
quency greater than 80 cm™!. The frequency shifts of the
intrahelical modes from the segment modes were expect-
ed to be strongly associated with the increase of the force
field due to the interhelical interactions. This point was
confirmed through the use of a simplified model for the
potential energy due to the interhelical interactions. For
modes above 100 cm™! we expect mostly intrahelical
modes.

The selection rules for an isolated DNA double helix
can be applied to the DNA crystal with the exception
that the antiphase crystal modes are not infrared sensi-
tive. The selection rules state that infrared absorption
occurs at the helix modes with phase difference between
base pairs, 6,, equal to O or @, whereas Raman scattering
occurs also at the helix modes with 6, =2®. The in-
frared absorption for the crystal was found to peak at 35,
50, and 83 cm ™. Intensity of Raman scattering is closely
associated with polarizability of the DNA crystal which
can only be calculated theoretically by determining the
electronic band structure. Therefore we are not able to
predict the spectrum of Raman scattering except the lo-
cation of the Raman scattering sensitive modes. Howev-
er, we suspect that Raman scattering peaks at around 30
cm ™ ! where the density of the Raman scattering sensitive
modes is the largest. A major Raman scattering band
was cited at around 25 cm™! in experimental observa-
tions. The characteristics of this band along with that of
the other observed band at 35 cm ™! agree with what was
predicted.

Those crystal modes where the motion falls mainly on
the counterions are expected to depend strongly on the
particular counterions. The 35- and 50-cm ™! infrared ab-
sorption bands do not have large counterion motion and
should therefore have no great dependence on ion
species. This prediction is in rough agreement with the
observed 30- and 50-cm ™! features in RNA crystals. The
83-cm™! band has much ion motion and should be
strongly dependent on the counterion as is the case for
the experimentally observed 65-cm~! feature in RNA
crystals.

In conclusion we do find rough agreement between our
predictions and experimental observations in the 20-35-
cm ! region. This includes frequencies and salt depen-
dence. The RNA features at =65 cm ™ ! seem to be asso-
ciated with our DNA predicted peak at 83 cm~'. The
difference may be due to water hydration effects not in-
cluded in our model.
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APPENDIX A: DNA MOLECULE
WITH ONE 360° TURN AS A UNIT CELL

Since the DNA crystal unit cell consists of 360° DNA
turns, we need the normal modes of an isolated DNA
molecule with a 360° turn as a unit cell to calculate the
normal modes of the DNA crystal through the Green-
function method. The dynamics of the DNA molecule
with a 360° turn, ““‘a segment,” as a repetitive unit cell can
be derived from that of a DNA molecule with a single
base pair as a unit cell.

The equation of motion for a DNA molecule with a
segment as a unit is

[M(0,)S,(6,)—S,(6,)A,(0,)]=0 . (A1)
6, is the phase difference between consecutive segments.

For a one-dimensional lattice, the wave vector k at the
first Brillouin zone lies in the range —w/d <k <w/d
with d being the size of a unit cell. Let a be the cell size
of one base-pair lattice. The first Brillouin zone for a
DNA molecule with one base pair as a unit cell is
—m/a <k, <mw/a and for the DNA molecule with one
segment as a unit is —7/1la <k, <w/1la. The disper-
sion curve of the DNA molecule with one segment as a
unit at the first Brillouin zone can be generated by folding
the curve of the DNA molecule with one base pair as a
unit at the first Brillouin zone. For each kj, there are 11
corresponding k,,

21 K+ 47 107

k,=k k.t k+—" . k+ .
b ™ 116 T 1a 57 1la

(A2)

The phase difference is equal to the wave number times
the size of the unit cell, 0=ka. For each phase difference
of the DNA molecule with one segment as a unit, 6, we
have 11 corresponding phase differences of the DNA
molecule with one base pair as a unit, 6,,

_ 6, 6,f2m O,t4rw 0,107

0,=—, , .
b 11 11 11 (A3)

S,(6,) and A(6;) can be expressed in terms of S, (6,) and
A(6,), with 8, equal to the 11 values listed above.

We label DNA base pairs as in Fig. 3. £, is the MWC
coordinates of the nth base pair. Let x,(8) be the MWC
symmetry coordinates of the Oth base pair and we have

t=5= [ x0l0)d0,

&= 5= [T (e RIX(0)d0,

&= [ (e TRx0(0)d0, (A4)
__1 T, —ifpyn

&= ‘/?1;_ —rr(e R)"xy(0)d6 .

Let = be the MWC coordinates of the segment unit cell,
which includes base pair O to 10. We have
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go x0(9)
£, (e "%R)x(6)

—_ — 1 ™ —i

E= glz __\/2:17"[—7 (e GR')zxo(()) de .
1§10 (e TT9R)1%x,(0)

Since each 6, leads to 11 corresponding 6, we have
S, (6p)
—i6,
e RS b ( 90 )

S,(6,)
e —ielRSb(el)

1 —i26, —i20
SS(OS):—\/_I—f e OR'ZSI,(G()) e 1R.2.S',,(91)
e %R 105, (g,) e IR, (6))
where 6,=0,/11, 6,=(6,+27)/11, 6,=(0,+4m)/
11, ..., 0s=(6,+10m) /11, 0¢=(0,—2m)/11,

6,=(0,—4m)/11,..., and 6,,=(0,—107)/11. The
1/V'11 factor on the right-hand side is the normalization
factor. If 6,=0, the 11 corresponding 0, are 0, —27 /11,
—4w /11, —6mw /11, —8m /11, — 107w /11, 27w /11, 47 /11,
6w /11,87 /11, and 107 /11.

The eigenvalue matrices of 4-DNA with one segment
as a unit, A (6,), and that of 4-DNA with one base pair
as a unit, A,(6,), are related as follows:

§o

&

£2

€3

[1]

€a

610

FIG. 3. Numbering of DNA base pairs. &, is the unit cell of
a double helix with one base pair as a unit and =, is the unit cell
of a double helix with 11 base pairs as a unit.
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(A5)
Sb(910
emielORSb(Glo)
e —izemR 25,,(910) N (A6)
e—ilOOlOR 105’,(910)
[
Ab(eo) 0 0 tee 0
0 AM6) O - 0
As(gs)‘— O 0 Ab(62) “ e 0
0 0 0 Ay(6y)
(A7)

The modes of a homopolymer segment can then be deter-
mined from the calculations of a system with a much
smaller number of degrees of freedom i.e., the system of
one base-pair unit cell. The matrix to be diagonalized is
smaller by a factor of 11.

If S, satisfies the unitary condition, S,:r (6,)8,(6,)=1,
so will S,

sle,)s0,)=I . (A8)

APPENDIX B: INTERHELICAL INTERACTION

To calculate the interhelical interactions between
POOI atoms, the following equations are used for the

9.0 backbone atoms
&>
§ 3.6 base atoms
1.0
2.0 10.0
rii(A)

FIG. 4. Dielectric constant vs the atom separation. For
atom separation less than 2.0 A, the dielectric constant is taken
as 1.0. For atom separation greater than 10.0 A, the dielectric
constant is taken as 3.6 and 9.0 for base and backbone atoms,
respectively.
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TABLE VII. Net charges of 4-GC homopolymer base pair
with Na* (guanine nucleotide).
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TABLE VIII. Net charges of 4-GC homopolymer base pair
with Na™t (cytosine nucleotide).

Atom Charge

Deoxyribose phosphate unit
c3+H 0.2953
c4+H 0.2117
o4 —0.4855
cl+H 0.3490
c2+2H —0.0707
o3 —0.7635
c5+2H 0.2371
o5 —0.6746
p 1.8099
ol —0.8875
02 —0.8911
Na™ 1.000

Guanine base unit

n9 —0.0752
c8+H 0.1661
n7 —0.1177
c5 —0.2363
c6 0.6501
nl+H —0.1701
c2 0.3943
n3 —0.3385
c4 0.2198
06 —0.6128
n2+2H —0.0097

force constants of the nonbonded interaction between
atoms i and j [2,12]:

fij=f1+f2 ’ (B1)
fi=27n leie)| (B2)
l_ Re——
Vieer
f2=42ri8 . (B3)

ij

f1 is for the electrostatic interaction and f, the van der
Waals interaction. r;; is the distance between the atoms.
e; and e; are the unbalanced charges in units of electron

Atom Charge

Deoxyribose phosphate unit
c3+H 0.2938
c4+H 0.2133
o4 —0.4860
cl+H 0.3897
c2+2H —0.0886
o3 —0.7598
c5+2H 0.2365
o5 —0.6790
p 1.8107
ol —0.8857
o2 —0.8962
Na™* 1.000

Cytosine base unit

nl —0.1862
c6+H 0.2558
c5+H —0.2667
c4 0.3907
n3 —0.4496
c2 0.6823
02 —0.6313
n4+2H —0.0563

charge. €; and €; are the dielectric constants pertinent to
atoms i and j. Constants 7 and 4 were chosen to be 0.43
and 0.12 [2,22].

The electrostatic terms require both a charge distribu-
tion, i.e., the net charge on each atom, and a choice of
effective dielectric constant between these atoms. When
the atoms are neighbors, no dielectric matter is between
them and the effective dielectric constant should be one.
When the atoms are far away and much matter is be-
tween them, the bulk dielectric constant is appropriate.
We use a functional form for the dielectric constant that
contains these two limiting values and linearly extrapo-
late the value between them [23,24]. A plot of this func-
tion form is shown in Fig. 4. The bulk values depend on
the material. Net charges of the atoms of 4-GC homo-
polymer are listed in Tables VII and VIII.

[1]J. M. Eyster and E. W. Prohofsky, Biopolymers 13, 2505
(1974).

[2]1 B. L. Young, V. V. Prabhu, and E. W. Prohofsky, Phys.
Rev. A 39, 3173 (1989).

[3] K. C. Lu, E. W. Prohofsky, and L. L. Van Zandt, Biopoly-
mers 16, 2491 (1977).

[4] S. M. Lindsay, in Proceedings of the International Symposi-
um on Computer Analysis for Life Science, edited by C.
Kawabata and A. R. Bishop (Ohmsha, Tokyo, 1986), pp.
89-98.

[5] R. Chandrasekaran, M. Wang, R.-G. He, L. C. Puigjaner,
M. A. Byler, R. P. Millane, and Struther Arnott, J.
Biomol. Struct. Dynamics 6, 1189 (1989).

[6] E. Clementi and G. Corongiu, IBM DPPG Research Re-
port No. POK-1, 1981 (unpublished).

[7]1 E. Clementi, in Structure and Dynamics: Nucleic Acids

and Proteins, edited by E. Clementi and R. H. Sarma
(Adenine, New York, 1983), pp. 321-364.
[8] V. V. Prabhu, Ph.D. thesis, Purdue University, 1988 (un-
published).
[9] K. M. Awati, Ph.D. thesis, Purdue University, 1989 (un-
published).
[10] J. M. Eyster and E. W. Prohofsky, Biopolymers 16, 965
(1977).
[11] E. B. Wilson, Jr., J. C. Decius, and P. C. Cross, Molecular
Vibrations: The Theory of Infrared and Raman Vibration-
al Spectra McGraw-Hill, New York, 1955).
[12]J. M. Eyster and E. W. Prohofsky, Biopolymers 13, 2527
(1974).
[13] S. M. Lindsay and J. Powell, in Structure and Dynamics:
Nucleic Acids and Proteins, edited by E. Clementi and R.
H. Sarma (Adenine, New York, 1983), pp. 241-259.



47 DYNAMICS OF AN 4-DNA HOMOPOLYMER CRYSTAL WITH . .. 4495

[14] T. Weidlich (private communication).

[15] L. Chern, Ph.D. thesis, Purdue University, 1992 (unpub-
lished).

[16] M. Kohli, W. N. Mei, E. W. Prohofsky, and L. L. Van
Zandt, Biopolymers 20, 853 (1981).

[17] P. W. Higgs, Proc. R. Soc. London, Ser. A 220, 472 (1953).

[18] T. Weidlich, Biopolymers 30, 477 (1990).

[19] T. Weidlich, Ph.D. thesis, Arizona State University, 1989
(unpublished).

[20] S. M. Lindsay, S. A. Lee, J. W. Powell, R. Weidlich, C.
DeMarco, G. D. Lewen, and N. J. Tao, Biopolymers 27,

1015 (1988).

[21] T. Weidlich, S. M. Lindsay, S. A. Lee, N. J. Tao, G. D.
Lewen, W. L. Peticolas, G. A. Thomas, and A. Rupprecht,
J. Phys. Chem. 92, 3315 (1988).

[22] D. A. Pearlman and S. H. Kim, Biopolymers 24, 327
(1985).

[23] L. Young, V. V. Prabhu, and E. W. Prohofsky, Phys. Rev.
A 39, 3173 (1989).

[24] K. S. Girrirajan, L. Young, and E. W. Prohofsky, Biopoly-
mers 28, 1841 (1989).



